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A B S T R A C T   

Manual inspection has been a common application for counting the trees and plants in orchards in precision 
agriculture processes. However, it is a time-consuming and, labour-intensive and expensive task. Recent remote 
sensing tools and methods provide a revolutionizing innovation for monitoring individual trees and crop 
recognition as an alternative to manual detection useful for long-term agricultural management. Our study 
adopted a Connected Components Labeling (CCL) algorithm to detect and count the citrus trees based on the 
high-resolution Unmanned Air Vehicles (UAV) images in two agricultural patches. The workflow consisted of 
applying morphological image operation algorithms on multi-spectral, 5-banded orthophoto imagery (derived 
from 1560 scenes) and 3,57 cm spatial resolution. Our approach was able to count 1462 out of 1506 trees 
resulting in accuracy and precision higher than 95% (average Recall: 0.97, Precision: 0.95) in heterogeneous 
agricultural patches (multiple trees and tree sizes). According to our understanding, the first time a CCL algo
rithm has been used with UAV multi-spectral images for detecting citrus trees. It performed significantly for 
geolocation and counting the trees individually in a heterogenous orchard. We concluded that our methodology 
provided satisfactory performance to predict the number of trees (in the citrus case study) in dense patches. 
Therefore it could be promising to replace the conventional tree detection techniques to detect the orchard trees 
in complex agricultural regions.   

1. Introduction 

Remote sensing is an essential component for precision agriculture, 
which has a significant role in agricultural sustainability (Hunt and 
Daughtry, 2018). It has been used commonly in percent tree cover 
(Donmez et al., 2015), land use/land cover mapping (Aplin, 2004; 
Thyagharajan and Vignesh, 2019), forest fire mapping (Satir et al., 
2016), soil management (Cilek et al., 2020), plant diseases and detection 
(Zhang et al., 2019; Lin et al., 2019; Thyagharajan and Kiruba Raji, 
2019), etc. Developing sophisticated methods for detecting and counting 
orchard trees from high-resolution imagery is one of its recent research 
efforts and focuses on efficient agricultural management and produc
tivity. Incorporating optical imagery and ground data can provide sig
nificant assets to improve agricultural production and to monitor 
vegetation and tree health in their growing (Torres-Sánchez et al., 

2015). 
Detecting and counting the trees in an orchard is necessary for yield 

prediction/monitoring and pest management in particular. In devel
oping countries such as Turkey, manual sampling methods, which 
physically record the trees by Ground Positioning System (GPS), are 
commonly used in tree counting and agricultural monitoring processes. 
These methods are expensive, labour-intensive, slow, and time- 
consuming to update for continuous monitoring. In recent years, there 
was a high concern about the use of UAVs in many industries, including 
agricultural applications (Belgiu and Csillik, 2018; Torres-Sánchez et al., 
2015). A common concern has been noticed on the literature surveys on 
increasing UAV usage, especially in precision agriculture. For instance, 
high-resolution data provided by UAV-mounted sensors often paired 
with different sensors assist farmers in the field management in preci
sion agriculture (Csillik et al., 2018; Deng et al., 2018; Hunt and 
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Daughtry, 2018; Yang, 2020, 2012). They can mainly be advantageous 
to accelerate the tree detecting and counting process compared to con
ventional techniques. In orchard tree detection, the UAVs have an 
indisputable potential in various scales from small to large cultivated 
patches. 

Many studies showed the UAVs’ remarkable advantages for crop 
monitoring (e.g., corn and wheat, citrus) (Mattos et al., 2018). They 
provide low-cost image acquisition methods for using in tree detection 
analysis, mainly in agricultural applications (Csillik et al., 2018; Hall 
et al., 2018; Hentschke et al., 2018). For instance, palm trees were 
detected by Malek et al. (2014) using a learning machine classifier. 
Position and heights of the orchard trees were estimated using point 
clouds and orthophoto derived from multi-spectral UAV imagery by 
Surovy et al. (2018) by combining Hough transformation and morpho
logical image operations (Al Mansoori et al., 2018). Similarly, Deep 
Learning (DL) algorithms have also been applied in UAV-based remote 
sensing applications (Ampatzidis and Partel, 2019; Csillik et al., 2018; 
Díaz-Varela et al., 2015; Jiang et al., 2017). In general, DL algorithms 
comprise unsupervised and supervised feature-learning as well as neural 
network algorithms. Among these, Convolutional Neural Network 
(CNN) showed a remarkable performance in agricultural fields and 
studies, including tree counting (Chen et al., 2017), crop density esti
mation (Madec et al., 2019), and object (Vazquez-Nicolas et al., 2020) 
and plant detection (Djerriri et al., 2018). 

Sophisticated methods to monitor orchard trees are needed for better 
agricultural and crop management. Using automated methods and al
gorithms in a comprehensive approach can be an effective alternative to 
manual delineation and counting trees for long-term future crop rota
tions. For counting and detecting the trees, various techniques have been 
applied and adapted to UAV imagery (Osco et al., 2020). Orchard trees, 
including citrus plantations, have been delineated using automatized 
approaches in agricultural patches (Ozdarici-Ok, 2015). CNN method 
was implemented in multi-spectral UAV images with a precise and 
reasonable agreement (Ampatzidis and Partel, 2019; Csillik et al., 2018). 
It has a hierarchical architecture that can be trained to perform object 
recognition and detection. 

Besides object-based classification, pixel-based classification algo
rithms were also used for object detection, such as k-means (Celik, 
2009), neural networks (Miller et al., 1995), and support vector ma
chines (Mountrakis et al., 2011). With the ever-growing available VHR 
remote-sensing images, conventional pixel-based classification ap
proaches were sensitive in these studies. Detecting and counting objects 
are the effective pixel-based feature extraction methods commonly used 
in computer vision and image processing applications (Campos et al., 
2017). The core task for object recognition from the UAV data is to 
provide relevant data sets for crop and orchard management. It repre
sents the object recognition and extraction (i.e. trees) from the multi- 
spectral imagery with high resolution. 

Connected-component labelling (CCL) algorithms provide effective 
solutions in component extraction and detection in image processing. 
CCL counts the various objects on an image, and it is one of the most 
fundamental operations in image processing. It is an effective computer 
vision algorithm based on the connected component techniques (4, 6, 8- 
connected) to detect linked regions in binary digital images. The image 
is scanned pixel by pixel sequentially, and a label to every foreground 
pixel in the binary image is assigned (Dharpure et al., 2013). Besides, 
high dimensional data and color images can also be processed using the 
CCL algorithms. 

To remove the imperfections in a binary image, including noise, 
texture, and shapes, morphological image operations are used and 
usually engaged with CCL. The misclassified regions are eliminated 
using morphological operations by applying some spatial features to the 
clustered image (Ramesh et al., 2016). The connected components be
tween the pixels can be detected by the CCL combined with the 
morphological operations in a binary image, including color or grayscale 
ranges, by proper thresholding (Acharya and Ray, 2005). Converted 

high-dimensional color or greyscale images can also be processed. Many 
research has been published on automatic target detection using com
puter vision, including mathematical morphology, Gabor filters (Jain 
et al., 1997), and temporal-based methods such as maximum likelihood 
and dynamic programming (Diani et al., 2001). 

Many studies have accurately detected and counted citrus trees using 
object-based techniques (e.g., CNN) in UAV multi-spectral images 
(Csillik et al., 2018; Ozdarici-Ok, 2015; Verma et al., 2016). Our 
methodology is based on a pixel-based CCL algorithm that detects each 
plant individually using rectangles. Considerably, the difficulty of 
discriminating individual plants may increase if the orchard is crowded 
and the plant size decreases. Therefore, the rectangle can not be detected 
if the geometry of individual plants may not be sufficiently visible. In 
this case, the CCL can operate on pixel information by integrating image 
recognition and completes labeling of the objects in a two-scan pro
cedure (He et al., 2012) by assigning the label to each pixel based on its 
neighbours (connectivity). However, the performance of CCL to detect 
and count citrus trees in considering high-density agricultural patches is 
still unknown. 

In our paper, we address the mentioned gap and present a CCL 
approach to cope with the challenge of detecting citrus trees in agri
cultural regions from UAV multi-spectral images. Our method not only 
provides the detecting but also counting of citrus trees in a patch. 
Regarding these issues, the study aims to adopt and implement a CCL 
approach for detecting and counting citrus trees in multi-spectral images 
acquired from a UAV sensor. A comprehensive computer vision tech
nique was implemented based on combining morphological filtering and 
CCL on multi-spectral images in a two-scan procedure. Compared to 
conventional methods, combining computer vision and UAV data is 
extremely important for developing cutting-edge techniques to produce 
frequent, cost-effective, and accurate monitoring data for better agri
cultural management. In this point of view, our study aimed to reveal an 
innovative approach for efficient irrigation, fertilization, and crop 
management in agricultural regions. The proposed method and outputs 
of the paper are organized as follows: Section 2 provides information on 
the study area and materials used, including UAV implementation; 
Section 3 describes the proposed methodological steps in detail; Section 
4 reflects the operational results; Section 5 reflects the discussion and 
conclusions of the study. 

2. Study sites and materials 

2.1. Study site 

The study area is located at the experimental agricultural fields of 
Cukurova University, in Adana city in the Eastern Mediterranean part of 
Turkey (Fig. 1). 

Turkey provides 2.75% of the world’s total citrus production and 
growth potential associated with many fruits and vegetables due to its 
suitable climatic and ecological conditions. Citrus fields in Turkey cover 
127.342 ha, and Cukurova is the leading agricultural region, which 
provides 77% of Turkey’s citrus production. Three main citrus types, 
including orange (Navelina, Valencia, Washington-Navel), lemon, and 
mandarin (Okitsu, Nour, Nova, Minneola, Tangelo), are cultivated; 
however, there has been a remarkable decrease in citrus production in 
the region in recent years (NCA, 2020). 

We have selected two agricultural parcels, covering 73.5 ha with 
Washington-Navel orange trees with six by 1.6 m spacing. These trees 
were almost six years old and about 3–4 m high, in mature and pro
duction stages. The civil aviation authorisation of Turkey was informed 
about the UAV operations in the study area. 

2.2. Setting up the UAV equipment and multi-spectral camera 

A multi-copter (V8 Octocopter) of DJI was used for image acquisition 
of the citrus parcels in the study area (Fig. 2). The equipment of the UAV 
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system was implemented and adapted in Cukurova University, Remote 
Sensing, and GIS Laboratory. The UAV equipment has a high load- 
carrying capacity, the ability to access and effective use in a small 
study site, and low flying altitudes. 

For an optimal tracking accuracy of the multi-copter, three GPS re
ceivers and antennas were integrated to work simultaneously. These 
receivers also have combined Inertial Measurement Unit (IMU) sensors 
to allow GPS for calculating metrics (attitude, angular rates, position, 
etc.) relative to a global reference frame in possible signal deficits. Using 
an IMU provides considerable advantages for the precision and reli
ability of the dynamic UAV applications at the lowest possible cost. 

The UAVs get their energy to power their engines from either fuel or 
electricity. Fuel engine UAVs are primarily used in military and defense 
projects, while electric engine ones are more common and accessible for 
research purposes. The UAV used in our study included eight engines, 
and each engine had 150 to 170 RPM rev/min. These engines demanded 
high electricity capacity; thus, we integrated a rechargeable Li-Po 
(Lithium Polymer) battery to provide approximately 25 min of safe 
flight time. The battery consisted of 6-connected cells with 25.2 V 
(nominal voltage) and 22.000 mAH capacity, which could draw 2.2. 
ampere for 1 h. We have taken out the capacity of the battery in flight 
planning. 

GPS and antenna positions were recorded through the A3 Pro flight 
controller onboard to perform image transfer and instant telemetry data 
from the UAV (Fig. 3a). The IMU sensor, engine detector, Electronic 
Speed Controller (ESC), engine directions, and controller settings have 
been configurated and recorded on the A3 Pro manually (Fig. 3b). In 

Fig. 1. Location of the study area (Adana, Turkey) (a) (left) and a false-color image acquired by the UAV (right). Citrus plantations at the study site (b1 and b2).  

Fig. 2. DJI octocopter (V8) used for image acquisition in the study.  
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case of an unexpected situation during the flight (i.e., wind changes), 
operational safety settings (i.e., autonomous pilot control) were also 
configurated. 

MicaSense Red edge 5-band sensor was used for image acquisition, 
designed primarily for small UAV systems. It provides multi-band data 
for precision agriculture applications, particularly for vegetation map
ping with a 5-volt operating voltage, approx. 150 g weight and 8 cm 
pixel ground sampling (at 120 m flight altitude). Its bands capture Blue 
(centered on 475 nm), green (560 nm), red (668 nm), near-infrared 
(NIR, 840 nm), and Red edge (717 nm), allowing for accurate detec
tion of vegetation health and discriminate species based on their spectral 
signatures (Micasense, 2015). Details of the camera are given in Table 1. 
A3 Pro, IMU systems, and a Multi-spectral camera used on the DJI V8 
Octocopter are presented in Fig. 4. 

2.3. UAV image acquisition 

Image acquisition with the DJI V8 octocopter was carried out from 
55 m altitude at 5 m/s speed in clear conditions between 13:30 – 14:30 
to minimize the shadow effects on the images and alternating lighted 
and dark areas (Campos et al., 2016). The wind speed was between 2 and 
3 m/s, and no precipitation occurred. The UAV and the multi-spectral 
camera were used with an average 80% overlap (along and across). 
The UAV was operated at a 23.2 m Mean Sea Level (MSL) and 55 m 
Above Ground Level (AGL) to maximize resolution and potential 
coverage area. Two flight operations were carried out and 1560 multi
spectral images were recorded (flight 1 = 899, flight 2 = 661). The 
planning and routing of Flight 1 are represented in Fig. 5. 

2.4. Image processing 

Digital Surface Model (DSM), orthophoto, and Normalized Differ
ence Vegetation Index (NDVI) maps were derived from UAV imagery as 
main inputs for detecting and counting citrus trees separately in our 
methodology. The images were geometrically corrected and prepared to 
include in the CCL processes. 

Point cloud 
In the first step, point cloud data were derived and photogram

metrically processed for deriving DSM and orthophoto images using 

Pix4D software (Pix4D, 2018). Image reference points were generated 
using point cloud and mesh techniques for mosaicing the obtained im
ages from the UAV with high accuracy. Depending on the quality of the 
acquisition images and the terrain type, 907,011 points were derived 
(14 per/m3) in the point cloud using the default settings of the Pix4D 
algorithm. Following, tie-points of these images were generated on the 
overlapping images and used to derive DEM and orthophoto mosaics. 
Point cloud images are given in Fig. 6, and their processing options and 
densification details in Table 2. 

Orthorectification and NDVI derivation 
The orthorectification was performed after deriving the point cloud 

using Pix4DMapper. A dual-frequency GNSS (Global Navigation Satel
lite System) was utilized to survey nine ground control points (GCPs). 
Boundaries of the orchards were defined by determining GNSS baselines 
between the polygonal points of the study sites based on these GCPs. 
Acquired images were corrected radiometrically based on the reference 
plate’s radiance values derived using the Micasense Red edge camera 
before the flight. More than two overlapping images were used to pro
duce 5-band orthophoto mosaics with 3.7 cm spatial resolution. These 
images were georeferenced with WGS84, Zone 36 (UTM) projection. 
Examples of the Red, Green, Blue, Near-IR, Red Edge orthophotos are 
provided in Fig. 7. NDVI maps were derived using Near-IR and Red band 
combination from the orthophoto images (Eq. (1)). 

A Digital Surface Model (DSM) is a topography associated image of 
the earth’s surface representing natural or human-made features located 
on the ground. As one of the input layers, we produced the DSM to 
obtain reliable data about the object heights, therefore extracting the 
citrus trees with higher accuracy. The point cloud data derived from the 
UAV was used to compute a DSM in the Pix4D environment. 

NDVI =
(NearIR − Red)
(NearIR + Red)

(1) 

In the DSM derivation process, a point cloud-based information was 
interpolated for the entire area. Missing cells in the point cloud were 
filled from the neigboring points. Then, a surface smoothing algorithm 
was applied to the generated DSM based on selecting the radius of the 
median filter. For keeping the surface orientation and thus, sharp fea
tures (i.e. tree regions), low smoothing values were appointed, and the 
DSM was delineated. 

3. Method 

A new and comprehensive delineation method for multi-spectral 
imagery was proposed in our study to improve orchard tree detection. 
The method is based on adapting the CCL process to high-resolution 
UAV imagery in a citrus tree case study. The workflow of the method
ology, depicted in Fig. 8, includes four main steps; (i) grayscale opera
tion and histogram equalization of the main inputs (DEM, 5-band 

Fig. 3. GPS positions and IMU settings (a) and engine directions (b) of the UAV used in the study.  

Table 1 
Micasense Red edge camera details.  

Bands Bandwidth (nm) Wavelength (nm) Resolution 

Green 20 560 Spatial (3.7 cm) 
Red 10 668 HFOV 470 

Red edge 10 717 VFOV 370 

NIR 40 840 DFOV 580  
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Fig. 4. A3 Pro and IMU systems (a) and mounted multi-spectral camera (b) on the DJI V8 Octocopter used in image acquisition for the study.  

Fig. 5. Planning (left) and routing (right) of Flight 1 (red dots represent the acquired images). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 6. Point cloud images of the study site (derived using 907,011 points).  
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orthophotos, NDVI) from the multi-spectral images, (ii) applying 
mathematical morphological image operations (opening and closing) for 
each band to obtain the gradient images, (iii) deriving binary formats, 
(iv) employing 8-connected CCL algorithm to the multi-spectral images 
in a two-scan way to obtain final citrus detection and count maps. The 
proposed approach was developed and implemented in the MATLAB 
environment. 

3.1. Grayscale operations and histogram equalization 

Grayscale image operations (also known as grayscale morphology) 
are used to extract image components (i.e., object shapes) by picking out 
small bright or dark features in an image. Indeed, gray color is one in 
which the RGB components all have equal intensity in the image. A 
single intensity value is necessary to specify for each pixel only for 
extracting the objects, as opposed to the tree intensities needed to 
identify each pixel in a full-color image. Thus, we used grayscale oper
ations to differentiate the total amount of emitted light for each pixel of 
the multi-spectral images; to capture the dark and bright pixels. In the 
study, the grayscale images were derived in 16-bit as entirely sufficient 
assets to simplify tree detection and count processes contrary to using 
detailed color images, as follows where Oixj is Multi-spectral Image Gixj is 
a grayscale image (Eq. (2)). 

Gixj = (ORed
ixj *0.2989)+ (OGreen

ixj *0.5870)+ (OBlue
ixj *0.1140) (2) 

After grayscale morphological operations, Histogram Equalization 
(HE) technique was applied for the contrast enhancements of the im
ages. It stretches out the intensity range and increases the global contrast 
of the images with close contrast values. Therefore, HE was useful in our 
study to enhance the contrast since our multi-spectral UAV images 
consisted of a bright and dark background, which were complicated for 
tree detection. 

HE cannot be applied separately to the RGB components of the image 
as it leads to dramatic changes in the color balance of an image set since, 
the RGB image representation is far from the human concept of color. 
Color features are highly related, and it is not possible to assess the 
similarity of two colors from their distance in this space in the multi- 
spectral RGB images (Golland and Bruckstein, 1996). Thus, we con
verted the images to the grayscale to apply the HE algorithm without 
changing the hue and saturation of the image (Eq. (3)). The contrast 
distribution of the acquired, grayscale images and HE are shown in 
Fig. 9. 

Sk − =
∑k

j=0

(
nj
n

)

(L − 1)k = 0, 1, 2, 3,⋯,L − 1. (3)  

where, n: total number of pixels in the input image (n0+n1+…+nL-1 = n), 
nj (nk): j. The number of the gray pixels, L: Desired number of the gray 
pixels, Sk: gray conversion threshold for the contrast enhancement. The 
grayscale values of pixels were altered to take advantage of the available 
shades of gray to become distributed across the full grayscale range. 

The process of image grayscaling is one of the main steps of image 

processing. It enables the morphological processes to give more precise 
results on the image. For instance, histogram, morphological operations, 
filter applications, etc., could be implemented more efficiently than the 
color image due to converting the images to gray. In our study, the UAV 
images recorded in different bands have been converted to the grayscale 
to implement object detection and counting easier. Converting the im
ages to the grayscale allowed us to apply HE and opening-closing 
morphological procedures for image enhancement. 

3.2. Image morphological operations 

Morphological processing was the next step after employing gray
scale and histogram equalization operations using non-linear operations 
linked to the features (shape and morphology) in an image. The relative 
ordering of pixel values is mainly relied upon and suited to processing 
binary and grayscale images. A morphological image processing process 
includes many compound operations, commonly including dilation, 
erosion, opening, and closing an image. In an image, the pixels are added 
to the boundaries of the objects by dilation and removed on object 
boundaries by erosion. The size and shape of the structuring element in 
image processing are the critical variables for the number of pixels 
added or removed from the objects in an image. Applying a rule to the 
corresponding pixel and its neighbors in an input image determines any 
given pixel in the output image in the morphological dilation and 
erosion operations. 

Moreover, two critical operators of mathematical image morphology 
are opening and closing. The fundamental operations are used to derive 
them following erosion and dilation. The opening, together with closing, 
serves as a useful step for noise removal in image processing and com
puter vision. Some of the bright pixels from the edges of regions of 
foreground pixels are removed by opening. Closing tends to enlarge 
foreground regions’ boundaries in an image similar to dilation to shrink 
background color holes in such areas. It still manages to be less 
destructive of the original boundary shape. 

Our study has applied morphological image processing to the gray
scale UAV images derived from the Micasense Red edge camera with 5- 
bands to extract their relevant tree detection components. We have 
extended the morphological operations to grayscale images using min
imum and maximum filtering attributed to each image pixel a new value 
equal to the minimum or maximum value in a neighborhood around that 
pixel. 

At the first step, the grayscale dilation was assigned to each pixel the 
maximum value found over the neighborhood of the structuring element 
for growing image regions by the Eq. (4): 

δB(f )x = (f ⊕ B)x = max
β∈B

f (x+ β) (4)  

where x is the dilated value of a pixel, S.E.: the maximum value of the 
image in the neighborhood when its origin is at x, after the dilation, the 
grayscale erosion was applied by assigning to each pixel the minimum 
value for shrinking image regions (Eq. (5)). 

εB(f )x = (f ⊖ B)x=
min
β∈Bf (x+ β) (5) 

The eroded value of a pixel x is the minimum value of the neigh
borhood’s image defined by the Structuring Element (SE) when its origin 
is at x (Zaoui and Belmadani, 2021). After the erosion, the grayscale 
opening of an image was performed for the structured removal of image 
region boundary pixels. The opened value of a pixel is the maximum of 
the minimum value of the image in the neighborhood defined by the SE. 
Moreover, the grayscale closing of an image was performed for struc
tured filling in image region boundary pixels (Adams and Bischof, 
1994). The opening of set X by structuring element B, denoted X ◦ B, is 
defined as (Opened Image) (Eq. (6)), and the opening of set X by struc
turing element B, denoted X • B, is defined as (Closed Image) (Eq. (7)): 

Opened Image = XB = (X − B)+B (6) 

Table 2 
Point cloud processing options and densification details.  

Processing options Settings 

Image scale Multiscale, ½ (half image size, default) 
Point density Low 
Minimum number of matches 3 
3D textured Mesh Generation Yes, Color balancing: No 
Advanced: 3D Textured Mesh Settings Sample Density Divider: 1 
Image group Blue, Green, Red, Near-IR, Red Edge 
Time for Point Cloud Densification 02 min:11 s 
Number of Generated Tiles 1 
Number of 3D Densified Points 907,011 
Average Density (per m3) 14.8  
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Closed Image = XB = (X+B) − B (7) 

Following the compound analysis, we have converted the morpho
logically processed grayscale images (for each spectral band) to a binary 
format to include the CCL workflow (Eq. (8)). 

Imageixj =
{
max val, Image(i, j) > 0

0, else (8) 

Thresholding is an effective method in image processing for image 

segmentation and creating binary images from grayscale images. We 
used automated thresholding to minimize background noise for 
extracting required objects (e.g. trees) from the images. Once the edges 
were detected, the treed regions less than < 50 pixels were removed for 
decreasing the noise. Automated thresholding was based on the object- 
attribute method as one of the histogram shape-based methods. It 
allowed multiband thresholding, including grayscale and colored im
ages used in the study, to make certain assumptions in image intensities 
for object extraction in better accuracy (Sezgin and Sankur, 2004). 

Fig. 7. Sample subsets of the Blue (a), Green (b), Near-IR (c), Red (d), and Red Edge (e) and bands acquired by the DJI V8 octocopter and Micasense Red edge camera 
from patch 2 in the study site (f) comprises the RGB image derived using MATLAB, (g) NDVI. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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Hence, we applied thresholding to each band by dividing the images into 
two sides: background and foreground. A feedback loop was employed 
for weighting the histogram between the two sides and repeated it for 
each band until the edges of the weighting scale meet (Anjos and 
Shahbazkia, 2008). 

After detecting the tree regions, they were localised in each row of 
the orchard. The distance between the tree regions in a row was calcu
lated using a Euclidean distance algorithm. Transformations of the ac
quired UAV images applying the morphological image operations to 
include the CCL workflow are given in Fig. 10 based on the automated 
thresholding. 

3.3. Detection and counting citrus trees with a CCL workflow 

After completing the morphological operations, we have employed a 
CCL algorithm to detect and count the citrus trees in binary images in a 
sequential labeling way. It was detecting and counting the operation of 
the label-connected components. Our approach detected the connected 
components between the pixels in the binary formats of our input im
ages, including DEM, Red, Green, Blue, Near-IR, Red edge bands, and 
NDVI converted from the grayscale images. The sequential labeling al
gorithm we used in our study is a non-recursive technique that identifies 
the connected components of an image. It scans an image pixel basis and 

Fig. 8. Flow diagram of the study.  

Fig. 9. Contrast distribution of the UAV and grayscale images as well as HE.  

Fig. 10. Transformation of the acquired UAV images by the morphological operations for the CCL workflow; (a) acquired, (b) opened, (c) grayscale and HE, (d) 
closed, (e) binary. 
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then assigns a label to each object based on the neigbourhood (4, 6, or 8- 
connectivity) with a two scan process. 

Our study employed 8-connected (N8) neigbourhood to our binary 
input images and labeled their pixels in each direction in the scanning 
mask. In this process, the algorithm scanned a pixel and examined its 
neighbours in the mask for an appropriate label determination for the 
object pixel. All neighbours (N1 = b(x, y-1), N2 = b(x-1, y-1), N3 = b(x- 
1, y) and N4 = b(x-1, y + 1) were examined as b (x,y) (Dharpure et al., 
2013) (Fig. 11). 

The two-scan algorithm (Shapiro and Stockman, 2001) based on the 
CCL iterated through the binary format and passed twice over the image. 
The 8-connected sequential region labeling algorithm used in our study 
is illustrated in Fig. 12. 

While obtaining images in first and second scans from the binary 
image, we scanned the binary image pixel by pixel in all four directions 
(left–right, top–bottom). We assigned a temporary provisional label in 
the first scan by marking the foreground pixel of the binary image as 1 
while background pixels as 0. First, a number of the object by zero were 
initialized. If the equivalent array value is equal to integer number one, 
the number of objectives were increased and replaced with the repre
sentative label. Otherwise, no change has occurred in the equivalent 
array value. Thus, a representative label was produced, and it was 
merged with each connected component in the binary image to create 
unique labels through the equivalence table (Chabardès et al., 2020) in 
the second scan. If the l representative label and object labels are the 
same, the labels are not changed in the image. If the labels are different, 
a new label is assigned to the object pixel (trees) from a representative 
set. At the end of the scanning process, each connectivity component in 
the image is assigned a unique label described in Dharpure et al. (2013) 
and Charbardes et al. (2020). 

After labeling and detecting the object (citrus trees) pixels, they were 
counted by a one-dimensional representative array. Several objects were 
initialized by zero first. When the array value was an integer, the 
number of objects increased, and the label value was replaced. This 
process continued until the entire object on the images was recognized 
and counted. 

3.4. Validation 

Evaluating the results of the CCL algorithms is necessary to validate 
the outputs, however always a challenging task due to their data de
pendency. We used a reference tree dataset collected from the study sites 
for validation. The reference data set comprised the number of the trees 
and their species and focussed on the detected number of citrus trees and 
the existing ones in the study site. The coordinates of reference for each 
tree were recorded using a GPS in field campaigns to compare detected 
tree information from the UAV images. Besides, bush diameters of these 
citrus trees were also measured using a laser meter to provide an 
ancillary reference set for comparing the segmented tree outputs from 
the image morphological operations. A buffer around these tree-based 
point samples was derived as suggested in Csillik et al., (2018). In this 
case, the bush diameter of each tree was represented by around 100 
pixels, and the regression has chosen their presence out of these pixels 
for validation. 

Each citrus tree detected and counted by the CCL was compared to its 
closest existing tree on the images by common evaluation statistics for 
binary classification (Saito and Rehmsmeier, 2015). We computed 
correctly identified trees as True Positives (TP), incorrectly identified as 

False Positives (FP), and missing trees (MT). The relationship between 
these variables indicated a successful, over, or under-identification. 
Recall (R = TP/TP + MT) was calculated to accurately describe the 
tree detection rate based on these indicators. The accuracy of the tree 
counting and detection was revealed with overall R and also Precision 
(P) (TP/(TP + FP) outputs (Csillik et al., 2018). 

4. Results and discussion 

A comprehensive approach combining sequential CCL algorithm and 
morphological image operations was employed in a UAV image set to 
detect and count the orchard citrus trees in the experiment. The study 
site was tracked in two parts as patch-1 and patch-2, and the UAV im
ages were acquired for both sites. In both patches, three species were 
defined (Washington Navel, Fukumoto, Navelina) that were planted in 34 
(patch-1) and 24 (patch-2) rows. These rows mostly have one species, 
and only a few have an order of mixed oranges. 

In total, 1560 UAV images were acquired and processed using the 8- 
connected CCL methodology. These images were converted to binary 
format and used in tree detection and counting. An example of citrus 
tree detection of the binary image for patch 2 is shown in Fig. 13. 

The coloured segmentation of the citrus trees indicated a detection 
on the binary imagery with a diameter of 2.5 m, and these trees were 
counted as full-grown. Additionally, the detected and counted citrus 
trees in patch 1 are illustrated on the UAV-derived Red Edge, Near-IR, 
NDVI, and DSM in Fig. 14. 

Red and Green bands resulted in inaccurate tree recognition relative 
to the other bands and the DSM. These bands provided insufficient 
contrast for tree detection in shaded canopies contrary to Red edge and 
Near-IR. Besides, it was seen that the citrus trees and bare ground with 
even sparse grasses showed close surface reflectances at especially in the 
green band. It might be assumed an adverse effect of the CCL perfor
mance with the mentioned band. 

Although the sequential CCL methodology struggled in the Red and 
Green bands, incorporating them into the morphological image opera
tions provided promising results for detecting and counting citrus trees 
in a Mediterranean orchard for the proposed task. In field campaigns, 
1506 citrus trees were counted and recorded manually for validating the 
CCL outputs over the UAV imagery. 956 citrus trees with mixed species 
were counted for the patch-1, and 550 trees for the patch-2. The fixed 
window size was taken into account as 3x3 in the 8-connected CCL 
process. Table 3 shows the tree detection and counting performance of 
the CCL methodology for each UAV band, NDVI, and DSM set. 

The results indicated that the 8-connected sequential CCL algorithm 
performance was remarkable for detecting and counting the citrus tree 
from high-resolution UAV imagery. It dealt with the heterogeneous tree 
sizes within the patches effectively and detected the various canopy 
sizes with reasonable accuracy. A total of 1462 citrus trees (mean value) 
were detected and compared to the reference tree set. The number of T. 
P. was 62, and MT was 30 on average. DSM showed the highest per
formance in tree detection with 1484 TP, 34 FP, and 11 MT. Some re
finements are needed with the Green band, which could barely detect 
the small crown trees. The overall R accuracy of the CCL methodology 
was 0,979 with a P of 0,959. The use of DSM and Red-Edge bands pro
vided the best results. 

The citrus trees of patch 1 are well grown and homogeneous as well 
the patch 2. There are only a few gaps detected on their rows. We 
realized that our CCL technique detected trees with 2.5 m diameter 
systematically. The method was also successful in avoiding the tree gaps 
and seedlings of the plantation rows 

The results show that citrus plantation lines are also identified from 
the CCL approach without any additional procedure. This is especially 
important for precision agriculture and related remote sensing appli
cations to assist missing tree detection, crop rotation, and optimization 
(do Nascimento Oliveira et al., 2018). However, there were also many 
challenges faced during the conducted segmentation for tree Fig. 11. 8-connected connectivity neighbourhood of pixel b(x, y).  
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recognition. An example of recognition error in the CCL approach is 
presented in Fig. 15. 

A sufficient number of ground truth data were collected to perform 
an accuracy analysis of the algorithm. The results from this study are 
comparable with similar studies that included tree recognition and 
detection using UAV images. Nevalainen et al. (2017) detected indi
vidual trees in the forest environment using hyperspectral imagery from 
a UAV and examined a similar number of trees comparable to our study. 
Wallace et al. (2014) and Zhen et al. (2016) applied a tree crown 
detection methodology using LIDAR with high precision. Sperlich et al. 
(2014) derived point clouds using a pouring algorithm from UAV-based 
aerial photos and detected trees with 87.68% accuracy. Kattenborn et al. 
(2014) improved the pouring algorithm to classify the point clouds 
geometrically and detected palm trees with an 86.1% accuracy in a 
dense orchard. Similar results with our study were reported in Csillik 
et al. (2018), Mohan et al. (2017), and Lim et al. (2015). Addressing 
these studies, our study is the first to use CCL on the multi-spectral UAV 
imagery to succeed remarkable accuracy for individual citrus tree 
detection. 

The results indicated that our CCL approach was able to extract the 
full-grown trees successfully. However, additional improvements could 
be needed to detect the younger trees that appeared with lower fre
quency. The mentioned lower frequency brought difficulty to separate 
the tree bushes and shadow effects. In this respect, increasing the ground 
samples and including a training set could bring an advantage for 
improved detection of trees. 

The challenges related to tree recognition were mainly addressed to 
the tree characteristics, shadow effects, and short planting lines. 

Presenting much of the canopy occurred a confusion on the approach to 
differentiating tree centroids. However, even much canopy appeared, 
the proposed methodology was capable of recognizing the location of 
the trees. Even though there were missing trees removed due to spacing 
and health issues, the plantation lines with reasonably spaced trees were 
defined by the sequential CCL remarkably. Overall, the proposed 
methodology was able to detect the regular planting lines and citrus 
trees successfully. These outcomes indicated the suitability of the two- 
scan CCL for predicting orchard trees, even with gaps in the planting 
lines. 

5. Conclusions 

Common methods for feature extraction (ANNs, object-based image 
analysis, etc.) require a large dataset for training for extracting the in
dividual trees. Besides, they can also struggle to cope with multiscale 
objects and landscapes with diverse spatial patterning. Our study pre
sented a comprehensive framework for developing an automated tree 
counting and detection from a UAV imagery CCL based algorithm 
designed for multi-spectral image processing, which does not require 
large training datasets. We employed an 8-connected and two scan CCL 
algorithm to extract the citrus trees accurately and overcome the scale 
problems (age and shape variations of the trees). Our work can be 
realized as an essential example for using the CCL algorithms incorpo
rating UAV imagery and morphological operations to increase the 
ability of automated tree recognition processes for agricultural pur
poses. It comprises a high potential to provide an efficient, cost- 
effective, and accurate approach for object detection to support 

Fig. 12. Sample of the 8-connected sequential CCL algorithm used in the study site (binary image (i), first scan (ii), second scan (iii)).  

Fig. 13. Examples of the RGB (left) and binary image (middle), as well as the detected citrus trees (labeled (left) and segmented (right)) (1 indicates citrus pixels and 
0 showed non-citrus pixels). 
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agricultural monitoring and crop management. 
The success of similar studies depended not only on the methodology 

but also on the physical and environmental conditions. For instance, the 
UAV systems have many challenges, including weather conditions, 
flying height, and camera specifications compared to satellite platforms. 
These challenges can affect the efficiency of its quality data supply to use 

subsequent agricultural analysis. Therefore, we have given a consider
able effort and focus on developing an equipmentally compatible and 
efficient UAV platform. During the process, we recognized that the 
battery voltage used in the octocopter was not within a safe range for 
operating the Micasense camera, which was five volts. Thus, we inte
grated a voltage regulator to provide a safe range and also implemented 

Fig. 14. Examples of identified citrus trees from the UAV-derived Red edge, Near-IR, NDVI, and DSM using the 8-connected CCL algorithm.  
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an XT-60 multiplier connector into the battery. Besides, the number of 
engines is also an essential point for the flight safety and rotation 
capability of the UAV. The engine settings should be done and installed 
on the flight controller for a safe flight. 

Despite the importance and advantages of UAV-based systems and 
methods, multidisciplinary UAV remote sensing applications are still 
limited. Research attempts should especially be increasingly focussed on 
forest and agricultural studies. Formulating approaches to optimize tree 
recognition, detection, and counting related algorithms would provide 
insights into UAV integration into the agriculturally and forest-related 
analytics. The goal of imposing a CCL algorithm in our study is to 
reveal a satisfactory solution that is low-cost, scalable and compatible 
with UAV-based studies. We derived encouraging outputs to demon
strate the potential of UAV-based multi-spectral imagery, computer- 
vision algorithms and photogrammetric point clouds for agricultural 
studies and orchard management. It suggests that the CCL, as a 
computer-vision algorithm, can detect and count different-sized (young 
or full-growth) citrus trees in complex agricultural patches with 
reasonable accuracy. The work can be extended to cover larger areas for 
efficient yield predictions, especially for the Mediterranean regions with 
high citrus cultivation. 

Moreover, further research could comprise the 3D analysis and 
different connection levels (4, 6-connected) in a two-pass labeling pro
cess to reveal the efficiency of these processes with UAV imagery. It 
could be extended to the extraction of different crops (i.e., corn, maize, 
soya), which could provide a considerable advantage for agricultural 

management and monitoring. Addressing our study’s outputs, UAV- 
based research directions for the future could identify the tree species 
and percent tree cover that are significant factors for yield and diameter 
estimations. 
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